翻訳と辞書 ・ Campeche catshark ・ Campeche chair ・ Campeche City ・ Campeche Island ・ Campeche Knolls ・ Campeche Municipality ・ Campeche, Florianópolis ・ Campbell's law ・ Campbell's Ledge ・ Campbell's mona monkey ・ Campbell's Platform railway station ・ Campbell's Soup Cans ・ Campbell's Soup Cans (disambiguation) ・ Campbell's Soup Cans II ・ Campbell's theorem ・ Campbell's theorem (geometry) ・ Campbell's theorem (probability) ・ Campbell, Alabama ・ Campbell, Alberta ・ Campbell, Aldrich & Nulty ・ Campbell, Australian Capital Territory ・ Campbell, California ・ Campbell, Florida ・ Campbell, Illinois ・ Campbell, Michigan ・ Campbell, Minnesota ・ Campbell, Missouri ・ Campbell, Modoc County, California ・ Campbell, Nebraska ・ Campbell, New York
|
|
Campbell's theorem (geometry) : ウィキペディア英語版 | Campbell's theorem (geometry)
Campbell's theorem, also known as Campbell’s embedding theorem and the Campbell-Magaarrd theorem, is a mathematical theorem that evaluates the asymptotic distribution of random impulses acting with a determined intensity on a damped system. The theorem guarantees that any n-dimensional Riemannian manifold can be locally embedded in an (''n'' + 1)-dimensional Ricci-flat Riemannian manifold.〔Romero, Carlos, Reza Tavakol, and Roustam Zalaltedinov. ''The Embedding of General Relativity in Five Dimensions''. N.p.: Springer Netherlands, 2005.〕 ==Statement== Campbell's theorem states that any ''n''-dimensional Riemannian manifold can be embedded locally in an (''n'' + 1)-manifold with a Ricci curvature of ''R''a'' ''b'' = 0. The theorem also states, in similar form, that an ''n''-dimensional pseudo-Riemannian manifold can be both locally and isometrically embedded in an ''n''(''n'' + 1)/2-pseudo-Euclidean space.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Campbell's theorem (geometry)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|